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ABSTRACT By rearranging naturally occurring genetic components, gene networks can be created that display novel func-
tions. When designing these networks, the kinetic parameters describing DNA/protein binding are of great importance, as these
parameters strongly influence the behavior of the resulting gene network. This article presents an optimization method based on
simulated annealing to locate combinations of kinetic parameters that produce a desired behavior in a genetic network. Since
gene expression is an inherently stochastic process, the simulation component of simulated annealing optimization is con-
ducted using an accurate multiscale simulation algorithm to calculate an ensemble of network trajectories at each iteration of
the simulated annealing algorithm. Using the three-gene repressilator of Elowitz and Leibler as an example, we show that gene
network optimizations can be conducted using a mechanistically realistic model integrated stochastically. The repressilator is
optimized to give oscillations of an arbitrary specified period. These optimized designs may then provide a starting-point for the
selection of genetic components needed to realize an in vivo system.

INTRODUCTION

Genetic networks have arisen naturally to sense and respond to

environmental stimuli, as well as control circadian rhythms

(1,2). By rearranging naturally occurring network components,

new and novel functions can be obtained (3). Using only a

handful of genes, researchers have constructed logic gates (4),

switches (5,6), oscillators (7), and other signal processing

motifs that are familiar from the field of electrical engineering.

These networks are created by specifying the desired function

of the circuit and designing a connectivity that might be

reasonably expected to produce that functionality. When car-

rying out this rationaldesign, it is critical that the genes involved

have compatible kinetic parameters, as the parameters involved

in regulation, transcription, and translation may strongly in-

fluence the behavior of the resulting gene network (8).

Previous simulation work in this field has used varying

methodology. The models of gene expression and regulation

used in prior simulations vary, but are often simplified,

combining many distinct reaction events of the transcription

and translation processes into single steps. Mechanisms for

the evaluation of those models also vary widely. In many

cases, a combination of ordinary differential equations and

stochastic simulations are employed to explore the system

dynamics and the effects of noise. Such studies include

circadian rhythms (9–11) and a synthetic oscillator coupled

to the bacterial cell cycle (12). Other researchers have used a

statistical-mechanical approach to describe the probabilities

of certain enumerated states (13), though this method does

not capture system dynamics. Arkin et al. (14,15) were among

the first to use a mechanistic model simulated using ex-

clusively stochastic simulations, and our simulations follow

in this tradition.

Past work in designing and optimizing these gene

regulatory networks has focused primarily on a completely

rational approach to design (3), or on optimization methods

and bifurcation analysis utilizing deterministic mass-action

kinetics (16,17). While the bifurcation theory of determin-

istic systems is convenient and well developed, these models

suffer from an inability to accurately describe the truly sto-

chastic nature of many of the regulatory species involved.

In a cell, some species such as operator or promoter sites

may be present in single-molecule concentrations. Regula-

tory proteins may be present in small numbers also, often

,100 per cell. Furthermore, these scarce reactants are in-

volved in slow reactions, e.g., the dissociation of s-factor

from RNAp. Given the small numbers of these species and

the low rates of some reactions, continuously-valued chem-

ical Langevin equations (18), when used alone, are insuffi-

cient to describe the system. On the other hand, depending

on system dynamics, regulatory proteins and enzymes may

be present in quantities of many hundreds or thousands per

cell, undergoing reactions such as dimerization at very high

rates. Given these two extremes, gene expression is an inher-

ently multiscale process, and should be treated as such (19).

This article presents an optimization method based on

simulated annealing (SA) to locate combinations of kinetic

parameters that produce a desired dynamic behavior in a

genetic network of a specified connectivity. Simulated an-

nealing is an optimization scheme first developed in the early

1980s by Kirkpatrick et al. (20,21) for systems with many

degrees of freedom. In the years since its creation, it has be-

come one of the most popular and widely-used optimization

algorithms due to its versatility and wide applicability. Simu-

lated annealing draws an analogy between a multidimensional

Submitted February 15, 2006, and accepted for publication August 2, 2006.

Address reprint requests to Y. N. Kaznessis, Tel.: 612-624-4197; E-mail:

yiannis@cems.umn.edu.

� 2006 by the Biophysical Society

0006-3495/06/11/3196/10 $2.00 doi: 10.1529/biophysj.106.083485

3196 Biophysical Journal Volume 91 November 2006 3196–3205



optimization problem and the minimization of energy that

occurs within a metal as it cools and its atoms optimize their

positions to minimize Gibbs free energy. In simulated an-

nealing, perturbations to the model replace atomic vibration,

a problem-specific quality metric takes the place of energy,

and a virtual temperature is lowered to ‘‘anneal’’ the system

toward the optimal value of that quality metric.

Since gene expression is an inherently stochastic process,

the simulation component of SA optimization is conducted

using an accurate multiscale simulation algorithm (22) to

calculate an ensemble of network trajectories at each iteration

of the SA algorithm. The optimization of simplified models

using ordinary differential equations has been well studied

(16,17). This article attempts to use a mechanistic, stochas-

tically integrated model of a gene network as the foundation

for a Metropolis Monte Carlo/simulated annealing optimi-

zation scheme. On the other hand, we recognize that locating

the global optimum behavior of a gene network is of little

value if the resulting set of optimum parameters does not

correspond to the kinetic parameters of genetic components

available to the experimentalist. Therefore, we will seek to

use our optimization scheme in combination with a particular

gene network model to locate many sets of parameters that

correspond to many different optima. The experimentalist

will then be presented with a larger menu of putative systems

that yield a desired network dynamic behavior, within a

certain tolerable error.

The network that will be used as an example will be the

three-gene repressilator of Elowitz and Leibler (7). Using

simplified models and ordinary differential equations, the

bifurcation analysis of such systems have been investigated

(23). Prior modeling investigations using mechanistic models

and stochastic simulation have determined that this system

gives rise to oscillations over certain ranges of kinetic param-

eters (8). These studies by Tuttle et al. (8) have also revealed

which kinetic parameters of the model give the best control

over the period of oscillations. This makes the repressilator

an ideal candidate for testing optimization schemes that can

then be applied to less well-studied systems. The goal of the

optimizations will be to obtain an oscillator that oscillates at or

near a specified period. The models obtained will be tested for

quality by comparing the periods of their oscillations to the

specified goal period. In applying simulated annealing to other

gene networks, this is the only aspect of the described SA

algorithm itself that would need to be altered. Indeed, the

definition of fitness or quality will be different with each new

network-function (switch, filter, etc.) under consideration and

will depend on the use to which the network is to be put.

METHODS

Overview

The Metropolis Monte Carlo/simulated annealing algorithm (20,21) is a

global optimization technique that is well-suited to complex systems with

many parameters. In summary, the algorithm, as applied to a chemical

kinetic system, consists of the following steps:

Step 1. Perturb the reaction kinetics of the current model, ki, to form a

new k9.

Step 2. Calculate concentration trajectories x9(t) based on kinetic

constants k9.

Step 3. Evaluate the fitness of the x9(t) trajectories.

Step 4.

(a) If the x9(t) trajectories are an improvement over the previous

iteration, xi(t), accept them and set xi11(t) ¼ x9(t) and ki11 ¼ k9.

(b) If the x9(t) trajectories are not an improvement over the pre-

vious iteration (subject to the Metropolis criterion), discard x9(t)

and k9.

Step 5. Return to Step 1, unless some stopping criterion is met.

We describe each of these steps, as they apply to the repressilator, below.

In general, the algorithm is applicable to any gene network, provided that the

desired behavior can be described quantitatively. This would amount to

changing the model in Step 2 to describe the new network and modifying

Step 3 to describe the desired function of the new network.

Gene expression as chemical reactions

The example network that is used here is a repressilator consisting of three

genes (7). This work refers to the lactose (lac), arabinose (ara), and tetra-

cycline (tet) operons, as these operons are well characterized and code for

proteins that are not essential for cellular function. Only a limited subset of

naturally occurring genetic components are available in constructing a gene

network, since a circuit that relies on repressing or overexpressing critical

proteins will be incompatible with living cells.

While the lac, ara, and tet operons function very differently, the theo-

retical framework that is used to express each gene in silico is quite similar.

Each interaction between individual, distinct chemical species is described

as a chemical reaction with a particular rate constant. In this network, the lac

operator controls the expression of tet repressor, the tet operator controls the

expression of the ara repressor, and the ara operator controls the expression

of the lac repressor. Table 1 lists the full three-gene network used to dy-

namically model the repressilator.

The mechanism of the expression of a single gene, as embodied in our

model, is also shown schematically in Fig. 1. With this model we have

attempted to capture a reasonable amount of mechanistic detail. The DNA is

modeled as having an RNAp binding site (labeled P in Fig. 1), one or more

repressor binding sites (labeled O2 in Fig. 1), and one or more coding

regions that code for protein production (labeled lac in Fig. 1; in this case,

for lac repressor monomer). When a repressor dimer or tetramer (AraC in

Fig. 1) is bound to an operator site, it obstructs the RNAp from binding and

prevents transcription. On the other hand, when no repressor is bound,

RNAp may bind, initiate transcription, and produce protein. Additionally,

most reactions are reversible—as indicated in Table 1.

Although specific kinetic and thermodynamic parameters are available

for the wild-type lac (24–28), ara (29–31), and tet (32,33) systems, the

reference-model that serves as a starting point for most optimizations in this

work is constructed symmetrically. That is, kinetic parameters for repressor-

operator binding, RNAp-promoter binding, repressor degradation, mRNA

degradation, etc., are set to the same value across the three different gene

systems. These initial parameters were chosen to be consistent with the

order-of-magnitude of values reported for the wild-type forms of these

genes, as referenced in Table 1. By using a model that is initially symmetric,

we insure that the system will oscillate during the first round of optimization

and provide a convenient base-line for observing the changes made during

the progression of the optimization algorithm. Ultimately, as the optimiza-

tion proceeds, the symmetry will break down among the parameters subject

to optimization.

Determining which of these parameters are subject to optimization is

critical. Only some of the rate constants in this model are experimentally
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accessible to modification, and of those, some will have little effect on the

behavior of the system. From prior experiments, it is known that repressor-

operator affinity has a marked effect on the period of oscillations (8).

Furthermore, this parameter must be changed, as the perfect symmetry of the

initial model discussed above is constructed far more easily in silico than

in vivo. Since many DNA-protein reactions have forward rates near the

diffusion limit of ;108 M�1 s�1 (34), this rate is considered to be fixed and

inaccessible to optimization. Only the unbinding rate constants, reactions 9,

11, and 13 in Table 1, are modified. Since the model system has two operator

sites controlling each gene (omitted in Table 1), this gives 6� of freedom in

the optimization.

Generation of perturbations

Perturbation of the kinetic parameters of the most recent accepted model is

accomplished by choosing with uniform probability a single parameter from

the list of parameters that are subject to perturbation. A Gaussian-distributed

TABLE 1 The complete network of reactions used as a

starting point for gene network optimizations

Reaction

No. Reaction k Ref.

Repressor protein dimerization/tetramerization

1 2 araC / araC2 109 y

2 araC2 / 2 araC 10 y

3 2 LacI / LacI2 109 (26)

4 LacI2 / 2 LacI 10 (26)

5 2 LacI2 / LacI4 109 (26)

6 LacI4 / 2 LacI2 10 (26)

7 2 tetR / tetR2 109 y

8 tetR2 / 2 tetR 10 y

Repressor/operator bindingz

9 LacI4 1 lacO1 / LacI4:lacO1 108 (28)

10 LacI4:lacO1 / LacI4 1 lacO1 10�2 (28)

11 tetR2 1 tetO2 / tetR2:tetO2 108 (32)

12 tetR2:tetO2 / tetR2 1 tetO2 10�2 (32)

13 araC2 1 araI1/I2 / araC2:araI1/I2 108 (37)

14 araC2:araI1/I2 / araC2 1 araI1/I2 10�2 (37)

RNAp / promoter binding

15 RNAp 1 lacP 1 lacO1 /
RNAp:lacP:lacO1

2 3 108 (25)

16 RNAp:lacP:lacO1 / RNAp 1

lacP 1 lacO1

10�1 (25)

17 RNAp 1 tetP 1 tetR2 /
RNAp:tetP:tetR2

2 3 108 (33)

18 RNAp:tetP:tetR2 / RNAp 1

tetP 1 tetR2

10�1 (33)

19 RNAp 1 araP 1 araI1/I2 /
RNAp:araP:araI1/I2

2 3 108 (29)§

20 RNAp:araP:araI1/I2 /
RNAp 1 araP 1 araI1/I2

10�1 (29)§

Bound RNAp conformational change

21 RNAp:lacP:lacO1 / RNAp:lacP* 10�2 (25)

22 RNAp:tetP:tetR2 / RNAp:tetP* 10�2 y

23 RNAp:araP:araI1/I2 / RNAp:araP* 10�2 y

RNAp moving to coding DNA

24 RNAp:lacP* / lacP 1 lacO1 1

RNAp:DNAlac

30 (14)

25 RNAp:tetP* / tetP 1 tetR2 1

RNAp:DNAtet

30 (14)

26 RNAp:araP* / araP 1 araI1/I2 1

RNAp:DNAara

30 (14)

Transcription

27 RNAp:DNAlac / RNAp 1

tet_mRNA

30 nt/s, 600 nt (14)

28 RNAp:DNAtet / RNAp 1

ara_mRNA

30 nt/s, 600 nt (14)

29 RNAp:DNAara / RNAp 1

lac_mRNA

30 nt/s, 600 nt (14)

mRNA / ribosome binding

30 lac_mRNA 1 rib / rib:lac_mRNA 105 {

31 tet_mRNA 1 rib / rib:lac_mRNA 105 {

32 ara_mRNA 1 rib / rib:lac_mRNA 105 {

Ribosome moves off of ribosome binding site

33 rib:lac_mRNA / rib:lac_mRNA_1 1

lac_mRNA

33 aa/s (14)

34 rib:tet_mRNA / rib:lac_mRNA_1 1

lac_mRNA

33 aa/s (14)

(Continued)

Table 1 (Continued)

Reaction

No. Reaction k Ref.

35 rib:ara_mRNA / rib:lac_mRNA_1 1

lac_mRNA

33 aa/s (14)

Translation

36 rib:lac_mRNA_1 / rib 1 lacR 1

Dlac

33 aa/s, 220 (14)

37 rib:lac_mRNA_1 / rib 1

lacR 1 Dlac

33 aa/s, 220 (14)

38 rib:lac_mRNA_1 / rib 1

lacR 1 Dlac

33 aa/s, 220 (14)

Protein and mRNA degradation

39 LacI / 5.78 3 10�4 k

40 LacI2 / 5.78 3 10�4 k

41 LacI4 / 5.78 3 10�4 k

42 tetR / 5.78 3 10�4 k

43 tetR2 / 5.78 3 10�4 k

44 araC / 5.78 3 10�4 k

45 araC2 / 5.78 3 10�4 k

46 Dlac / 5.78 3 10�4 k

47 Dtet / 5.78 3 10�4 k

48 Dara / 5.78 3 10�4 k

49 lac_mRNA / 2 3 10�3 {

50 tet_mRNA / 2 3 10�3 {

51 ara_mRNA / 2 3 10�3 {

References are to the actual kinetic data; initial data depicted below has

been reduced to order-of-magnitude estimates and made symmetric across

all three gene systems. Units on k: first-order reaction, s�1; second-order

reaction (M s)�1. Reactions that appear to be third- or higher order are

treated as second-order. Reactions with two kinetic constants are g-dis-

tributed events. In these cases, the first constant is the rate of each step

(first-order) and the second constant is the total number of steps. Cell

volume is taken to be 10�15 liters. Initial conditions are one molecule for all

DNA species, 0 for all RNA and protein species.
yValues were estimated for tet and ara parameters based on literature

values for the lac system.
zEach of these reactions is duplicated as appropriate to give two or three

operator sites per promoter region. Multiple operator sites are distinguish-

able.
§Values were adjusted to give ;20 proteins per mRNA.
{The forward and reverse reaction rates were estimated from a given Kd

value.
kConstant is based on typical protein degradation half-lives.
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random variable is then added to this parameter. If this results in a negative

kinetic parameter, the move is discarded and a new random variable is

chosen. This procedure may be repeated to create perturbations in more than

one dimension of parameter-space. In fact, in all experiments conducted in

this work, two of the six available parameters were perturbed during each

optimization iteration.

Since unbiased perturbations are important (21), the mean value of these

random variables is always zero. The variance is determined by multiplying

the original kinetic parameter by some constant. For instance, s ¼ 0.2 k0,

where both s and k are vectors whose dimension corresponds to the number

of kinetic parameters subject to perturbation. Prior experiments have revealed

that repressor-operator affinities may be varied over roughly two orders of

magnitude without quenching oscillations. Setting the perturbation standard

deviation at 620% of a parameter’s original value gives a good coverage of

the parameter space without making moves that are so aggressive as to destroy

the system’s oscillations in one move. Ultimately, s is a vector whose values

must be empirically determined to yield convergence with the fewest number

of iterations. This effect is among those explored below.

Stochastic simulation algorithm

The calculation of the concentration trajectories is the most processor-

intensive operation involved in optimizing a stochastic dynamical system.

The original stochastic-simulation algorithm developed by Gillespie (18)

models discrete concentration trajectories as a jump Markov process. The

algorithm used in this work is a hybrid jump/continuous Markov process

due to Salis and co-workers (22,40) and accelerates the original Gillespie

algorithm in cases where some reactions occur at high rates and involve

relatively plentiful reactants.

In a cell of volume V containing N species Si (i ¼ 1. . .N) engaging in M

reactions Rj (j ¼ 1. . .M), the following quantities are defined:

xi(t)—the state vector of the system contains the number of molecules of

species i in the cell at time t.

nij—the M 3 N reaction matrix describes the change in the number of

species Si after the execution of each reaction Rj.

aj(x)dt—the probability that reaction Rj will occur in the cell in a

differential unit of time, dt, given the current concentrations of all

reactants, x.

In the traditional Gillespie stochastic-simulation algorithm, the ‘‘next

reaction’’ time would be calculated for each reaction. In Eq. 1, URN(0,1)

refers to a random number distributed uniformly between 0 and 1:

tj ¼
ln

1

URNð0; 1Þ

� �

aj

1 t: (1)

The lowest value of tj would be the time until the next reaction and the

value of j would give the next reaction’s identity. One would then execute

that reaction by adding the jth row of v to x and adding t to t.

In Salis’ algorithm, the system is partitioned into fast and slow reactions.

To be considered ‘‘fast,’’ a reaction must meet two criteria:

1) the reaction occurs many times in a short time interval; and

2) the species involved in the reaction are present in relatively large

numbers, so that the effect of each reaction event on the total number

of reactant molecules is small.

If these conditions are met, the reaction is classified as ‘‘fast.’’ Fast

reactions are assumed to occur in a continuous state space rather than a dis-

crete state space. That is, due to condition 2, it is possible to allow concen-

trations that take values that would correspond to noninteger numbers

of reactant molecules without introducing significant error. The Mfast reac-

tions that meet these requirements may then be simulated with a Langevin

equation:

dXiðtÞ ¼ +
Mfast

j¼1

vjia
f

j ðXðtÞÞdt 1 +
M

fast

j¼1

vji

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

f

j ðXðtÞÞ
q

dWj: (2)

Here, W is a Wiener process (Gaussian random process, Wt–Ws ; N(0,t–s))

of dimension Mfast and n is altered to contain only the fast reactions. The

M–Mfast reactions that do not meet the requirements above are simulated

by a modified version of the Gillespie algorithm. Salis does this by com-

puting the integral of Eq. 3:

Z t01t

t0

as

j ðt9Þdt9 1 logðURNjÞ ¼ Rjjt j ¼ 1 . . . Mslow
: (3)

As the fast-reaction stochastic differential equations described in Eq. 2

are integrated, the slow-reaction integrals of Eq. 3 are integrated alongside.

When one of the slow-reaction residuals, Rj, crosses zero, reaction j is

deemed to have occurred. The state vector, x, is then updated by adding

vector nj and the integrations continue. Calculation of the propensities

(which are based on the state vector, x, and are thus coupled to both fast

and slow dynamics) and evaluation of the fast/slow categorization criteria

are performed continuously during the integration. This scheme may

generate great time savings depending on the number of reactions classified

as fast, especially since the simulation must be repeated multiple times to

yield an ensemble of trajectories at each iteration of the optimization

algorithm.

Evaluation of the trajectories

Once a set of reaction trajectories have been calculated, they must be

evaluated for fitness. In this work, a discrete Fourier transform of protein

concentration is used to compute the dominant period of the oscillator.

Protein Dlac, a marker protein coexpressed with lacR monomer, is used to

compute this period. Since the genes of the repressilator are expressed in

sequence, the oscillator as a whole can have only one period, so this choice

of a representative protein is somewhat arbitrary.

FIGURE 1 The model of the gene expression pro-

cess used in this work.
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The discrete (forward) Fourier transform is given by Eq. 4 (35):

fj ¼ +
N�1

k¼0

xke
�2ip

N jk
j ¼ 0; . . . ;N � 1: (4)

In the code developed for this work, the FFTW package was used to

perform Fourier transforms (36).

Additionally, before computing the discrete Fourier transform, x is

transformed by subtracting its mean value and then padded with zeros to

increase the length and smoothness of the resulting transform. In the case of

a biochemical oscillator, the vector x is of length N (plus the length of the

padding zeros) and contains a single protein concentration as a function of

time, spaced evenly by time Dt. The output vector, f, is complex and of the

same length as the input vector x. After computing the Fourier transform, the

power spectrum is obtained as the real vector P given in Eq. 5:

Pj ¼
fj f
�

j

N
: (5)

The indices of this vector, j, correspond to periods of oscillation N 3 Dt/j,

and the value of Pj describes the contribution of this period to the total signal.

To locate the dominant period of the oscillator, l, the index of the maximum

value of P is determined and the dominant period l ¼ N 3 Dt/jmax is

calculated.

Once the dominant period is obtained, it is used to calculate the model’s

energy. This may be accomplished in a variety of ways, as the choice of

energy function is an element that is not prescribed by the simulated

annealing algorithm, but must be defined by the practitioner or determined

empirically (in fact, one can define alternate energy functions that do not rely

on Fourier transforms at all). In this work, the L1 norm of the difference

between the calculated dominant period and the desired period is taken to

be the energy, Ei, of the model. If h-trials are computed at each iteration of

the optimization algorithm, the overall energy of the model consists of an

ensemble average of these h individual energies, Ei. The accept/reject deci-

sion is based on this ensemble average energy:

ÆEæ ¼ 1

h
+
h

i¼1

Ei ¼
1

h
+
h

i¼1

jli � lgoalj: (6)

If a parameter perturbation should happen to produce a system that does

not oscillate, there will be no well-defined dominant period. In these cases,

the Fourier transform will be relatively flat, and locating the maximum will

give a nonsensical period value far from the desired goal. These cases result

in very high energies and are rejected with extremely high probability—a

self-correcting situation.

Simulated annealing

The decision of whether to accept or reject the model in question is made

using the Metropolis criterion with simulated annealing (21). Once the

ensemble average energy has been obtained, a random number is drawn,

U ; Uniform[0,1]. The model is then accepted and recorded if Eq. 7 is

satisfied:

U#e
�ðÆEæk�ÆEæk�1Þ

T : (7)

If Eq. 7 is not satisfied, the model is discarded.

While the temperature is not defined in its usual physical sense, it is used

in Eq. 7 to adjust the tolerance for accepting unfavorable moves; a

temperature of 0 would require each move in parameter space to decrease the

ensemble average energy of the system. In that sense, it plays the same role

as the thermal energy, kT, in a physical system of particles. While many

annealing schedules are possible, one that is commonly used is the

proportional scheme where Tk11¼ a 3 Tk. With this schedule, T0 and a are

empirically determined with a , 1. Ideally, whatever the initial value of T, it

should go to zero as the optimization concludes. Of course, the proportional

scheme will never reach zero temperature, so the number of iterations

required (and thus the final temperature) is empirically determined by the

quality of the solutions obtained. Once the energy fails to move significantly

up or down (i.e., freezing), the algorithm may be halted.

To implement simulated annealing, the thermal energy value, T, is

decreased monotonically according to an empirically determined annealing

schedule. This step contains one of the most significant differences between

the optimization of stochastic dynamics and deterministic dynamics. Since

the quantity ÆEæk is a random variable, the accept/reject decision is made

without knowledge of the exact fitness of the current model. If the dynamics

were simulated deterministically, Ek could be calculated exactly and the

ensemble average would be unnecessary.

Multiple identical optimization experiments

Since multiple combinations of kinetic parameters will produce the same

overall system period, multiple independent optimizations must be per-

formed to collect a representative sample of optimized parameter sets. Each

optimization, if started with identical kinetic parameters and using identical

initial conditions, will proceed differently due to the stochastic nature of the

SA algorithm and may reach different a set of kinetic parameters.

For the results of the optimization to be useful in constructing a network

in vivo, it is critical that all of the optimized parameters match those of the

genetic components used by the experimentalist. Since the number of real,

available genetic components is finite, not every optimization will yield a

system that would be easy to construct. By performing the optimization

many times, we seek not just one set of kinetic parameters that yield the

desired oscillation period, but many sets of kinetic parameters that may be

employed to give oscillations at or within some tolerance of the desired

period. For this reason, the majority of the data described below deal with

sets of optimizations that start from identical locations in state and parameter

space and have identical goals.

RESULTS AND DISCUSSION

Optimization algorithm behavior

In the trials that follow, the rate constants under investigation

are the rates of the dissociation of repressor complex and

operator site, shown in Table 1 as Reaction types 9, 11, and

13. These constants were chosen because they are known to

have a significant effect on the period of the system when

varied within reasonable bounds (8). Since two operator sites

are available in each of the three genes present, there are six

parameters that are independently subject to perturbation. All

six dissociation rate constants are initially equal. At each step

of the optimization algorithm, two of these six parameters are

altered independently by 10–30% of their original value to

quickly explore the parameter space.

The first aspect of the stochastic-model simulated anneal-

ing algorithm to be investigated is the size, h, of the ensemble

of trials that is used to compute the average energy of the

model. This parameter is one that is unique to the optimization

of stochastic dynamical systems. When optimizing a system

of ordinary differential equations, one computes the fitness of

the model after only a single integration.

To investigate this parameter, a period of 6 h was first

chosen as the goal of the optimizations. This value is known

to be well within the envelope of achievable oscillations (8).
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The initial period of the oscillator reference-model is 4.3 h.

At each iteration of the simulated annealing algorithm, h

trajectories were calculated for the same set of kinetic pa-

rameters and used to compute the ensemble average energy

ÆEæk at that iteration. The parameter h was varied, and 20

identical optimizations were conducted at each h-value. The

results are summarized in Table 2 and depicted in Fig. 2.

Each of these optimizations was given 24 � h CPU hours

to run, after which they were terminated. The ensembles for

each optimization were computed in parallel using h Intel

Itanium 2 CPUs at 1.5 GHz. The energies listed in Table 2

are computed with the L1 norm, i.e., the absolute value of the

difference between the goal period and the ensemble-average

period. Fig. 3, A and C, shows the oscillator before and Fig.

3, B and D, after optimization using the initial kinetics and a

set of optimized kinetics obtained using h ¼ 2.

As the value of h increases, the uncertainty in ÆEæk at each

iteration of the SA algorithm is reduced, with the greatest

reductions in errors occurring at small h-values. Table 1 also

shows that acceptance ratio (the number of moves in pa-

rameter space that are accepted, divided by the total number

that are attempted) monotonically increases with ensemble

size. In essence, using a given amount of CPU time, one may

sample many points in parameter space, moving from point

to point with only a cursory examination of the resulting

network quality at each point. Alternatively, one may use the

same amount of CPU time to sample fewer points in pa-

rameter space while determining the fitness of each point more

thoroughly. In Fig. 2 and Table 2, the number of optimizations

at each value of h was held constant, so the amount of CPU

time expended increases linearly with the value of h. As Fig. 2

depicts, as the size of the ensemble increases, the mean best

energy of the optimizations generally decreases and the error

in the estimate shrinks.

Additionally, a single optimization was performed using an

ensemble size of h ¼ 100. This would consume the same

amount of CPU time as 10 optimizations using an ensemble

size of h¼ 10. By computing a larger ensemble of trials with

the same kinetics, this optimization has a more accurate

estimate of ÆEæk at each iteration of the SA algorithm than h¼
10 would, but may only sample a relatively small number of

points in parameter space, relative to the 10 optimizations of

h ¼ 10. After 24h CPU hours, the lowest energy achieved is

0.353 h. In contrast, performing 10 independent optimizations

with h¼ 10 uses the same number of CPU hours, but provides

a set of 10 optimized systems with minimum energies of

0.388 6 0.144 h. The best energy obtained in these 10 opti-

mizations is 0.258, better than the 0.353 of single large-

ensemble optimization. Additionally, having 10 sets of

parameters would provide a larger menu of possibilities for

the experimentalist to select from. Therefore, it is more

productive to devote a given amount of CPU time to running

more trials, rather than evaluating each trial precisely.

Because of the large amount of CPU time required to

compute ensembles of stochastic trajectories, the amount of

CPU time consumed was used as the stopping criterion,

rather than the number of iterations, accepted models, energy

improvement, or other traditional metrics of convergence.

This is a concession to practical necessity. On the other hand,

it is important that each optimization run long enough to

converge to a reasonable degree. To demonstrate that this is

occurring within 24 � h CPU hours, five of the optimizations

described in Table 1 for h ¼ 6 were continued for an ad-

ditional 96 � h CPU hours. These results are shown in Fig. 4

below. While improvement would (and does) continue to

occur, the rate of improvement is substantially slower than

during the initial 24 � h CPU hours. This is reflected in the

acceptance ratio, which drops from 0.300 in the initial

interval to 0.077 in interval depicted in Fig. 4.

The parameters investigated next were the initial temper-

ature and the annealing schedule. The simplest annealing

method is the proportional method, whereby Ti11 ¼ a 3 Ti,

where a is an empirically chosen number with 0 , a , 1.

Table 3 presents the results of trials with this optimization

scheme. Again, the initial period was 4.3 h, the goal was

6.0 h, and an ensemble of six trials was used to evaluate the

FIGURE 2 The mean value of the best energy obtained by 20 optimiza-

tions as a function of the size of the ensemble (h) used to compute mean

energy within the SA algorithm. The error bars represent 61 standard

deviation.

TABLE 2 The effect of varying ensemble size on performance

of the optimization

Ensemble

size [trials]

Avg. best

energy

[hours]

SD of best

energy

[hours]

Avg. acceptance

ratio

CPU time

expended per

optimization [hours]

1 0.714 0.462 0.149 24

2 0.539 0.466 0.208 48

6 0.426 0.340 0.300 144

10 0.374 0.132 0.334 240

16 0.426 0.135 0.382 384
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average energy. Table 3 also depicts a data point at a low

initial temperature and with no annealing (i.e., a ¼ 1.000).

This series of trials generally performed more poorly than the

simulated annealing trials.

The size of the attempted steps in parameter space is also

critical to the optimization process—too large a step could

cause the system to cease oscillations altogether (leading to

rejection of the attempt with probability ;1), while steps that

are too small will require an excessive number of iterations

for convergence. As described above, the standard deviation

of attempted step size is defined by multiplying the original

value of the kinetic parameter in question with an empirical

proportionality constant: si ¼ c 3 k0,j. This step size does

not change as the optimization progresses. The proportion-

ality constant, c, is investigated in Table 4; all other param-

eters, including an ensemble size of 6, were held constant.

These data show that results improve as steps are larger and

more aggressive, even up to standard-deviations of 3/10 of a

parameter’s original value.

The final series of trials investigates the effect of varying

the initial rate constants, k0. This also implies that the size of

the steps in parameter space changes, since their standard

FIGURE 3 Plots of the number of molecules of Dlac

(a marker protein coexpressed with lacR) in a sample

cell in the time domain and their associated power

spectra in the period domain. The plots at left (A,C) are

the oscillator at its initial configuration while the plots

at right (B,D) show it after optimization. The objective

of the optimization was a period of 6 h.

FIGURE 4 Optimization continued for 576 (96 � h) CPU h after the initial

144 (24 � h) CPU h. Initial period is ;1.6 h.

TABLE 3 Effects of initial temperature and annealing

proportionality constant

T0 a

Avg.

best

energy

[hours]

SD of

best

energy

[hours]

Initial

acceptance

ratio

Avg.

acceptance

ratio

No. of

optimizations

that reached

E # 0.25

(of 20 total)

6 3 10�2 0.900 0.47 0.31 0.85 0.27 3

6 3 10�2 0.975 0.43 0.34 0.76 0.30 5

6 3 10�2 0.990 0.37 0.16 0.81 0.32 3

9 3 10�2 0.975 0.36 0.26 0.85 0.33 8

1 3 10�2 1.000 0.63 0.48 0.67 0.18 4
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deviations were defined as si ¼ c � k0,i. The two sections of

Table 5 show this effect. The trials in the upper section

(Table 5, lines 1–3) allow the step-size to change with initial

condition, while the trials in the lower section (Table 5, lines

4 and 5) use steps with the same standard deviation as line 2,

s ¼ 0.2 � 10�2 1/s.

The initial condition is furthest from the goal in lines 1 and

4, and indeed, neither choice of step-size reaches the goal in

144 (24 � 6) CPU hours. Lines 3 and 5, however, show how

critical step-size may be. In line 3, none of the optimizations

reach the goal period within 60.25. Line 5 uses identical

initial conditions, but all 20 optimizations reach the goal

period given an identical amount of CPU time. In line 3, the

steps in parameter space are 0.2 � 10�3 1/s¼ 0.0002 1/s. This

is simply too small to sample the parameter space efficiently.

Line 5, however, uses steps that are an order-of-magnitude

larger, 0.002 1/s. By sampling the region around the solution

more efficiently, the results are drastically improved. Curi-

ously, the optimizations summarized on line 5 of Table 5

actually outperform those summarized on line 2, though the

initial condition on line 5 is further from the goal and both

sets use steps of the same size.

The kinetic constants obtained via optimization for the

case of h ¼ 2 are presented in Table 6 below. As discussed

above, the parameters that are subject to perturbation are the

repressor complex/operator site unbinding rate constants.

Since each of the three operons is modeled as having two

operator sites, this gives 6� of freedom.

Because simulated annealing is a stochastic optimization

scheme, the kinetic constants obtained by this optimization

are themselves random variables. It is also worth noting that

there are many ways that this network may approach the

optimized state. That is, there are multiple and very different

combinations of kinetic parameters that yield a given period

of oscillation, and in principle, multiple energy zeros.

Finally, Table 7 gives the kinetic constants of a single

optimization from the group of 20 optimizations represented

in Table 6. The oscillator depicted in Table 7 had an energy

of 0.0249; its period was ;2 min away from the desired goal

of 6 h.

These are within the range of realistic values for a re-

pressor/operator dissociation rate constant. Experiments with

one of the best-studied systems, the wild-type Lac repressor,

show a dissociation rate constant of ;20 3 10�3 s�1 (25).

Assuming a repressor-operator forward binding rate near the

diffusion limit of ;108 M�1 s�1 (34), this gives affinities in

the range of 6.67 3 109 to 4.76 3 1011 M�1. In the specific

case of the Lac system, the forward binding rate constant is

actually somewhat higher than the theoretical diffusion-

limit; Riggs et al. (24) give a value of 7 3 109 M�1 s�1. This

discrepancy is thought to involve the repressor sliding along

the DNA, thus reducing the dimensionality of the diffusion.

The affinities of many mutant operator sites have also been

studied. A selection is presented in Table 8.

Of course, affinities only give the ratio between binding

and unbinding rate constants. As more true kinetic data is

made available by experiments, the accuracy and usefulness

of modeling will greatly benefit.

CONCLUSIONS

The simulated annealing algorithm illustrated here demon-

strates that gene network optimizations can be conducted

using a mechanistically realistic model integrated stochas-

tically. While the process is computationally intensive, it

TABLE 4 Variation of step size and its effect on convergence

c

Avg. best

energy

[hours]

SD of

best energy

[hours]

Initial

acceptance

ratio

Avg.

acceptance

ratio

No. of

optimizations

that reached E # 0.25

(of 20 total)

0.1 1.31 0.39 0.79 0.30 0

0.2 0.43 0.34 0.76 0.30 5

0.3 0.30 0.11 0.73 0.24 8

TABLE 5 The effect of variation of initial conditions

k0 [1/s]

Avg.

initial

period

[hours]

Avg.

final

energy

[hours]

SD of

final

energy

[hours]

Initial

acceptance

ratio

Avg.

acceptance

ratio

No. of

optimizations

that reached

E # 0.25

(of 20 total)

1 10�1 2.81 2.25 0.54 0.88 0.31 0

2 10�2 4.33 0.43 0.34 0.76 0.30 5

3 10�3 8.29 1.07 0.22 0.70 0.14 0

4 10�1 2.80 2.93 0.07 0.80 0.30 0

5 10�3 8.50 0.16 0.04 0.67 0.20 20

Lines 1–3 also vary step size, while lines 4 and 5 use step-sizes identical to

those of line 2.

TABLE 6 Actual kinetic constants for repressor complex/operator site unbinding obtained for an oscillator using an ensemble

size of h ¼ 2 trials per set of kinetic parameters

Mean [1/s] Min [1/s] Max [1/s] Mean [s] Min [s] Max [min]

Lac 1 (7.73 6 4.53) 3 10�3 0.15 3 10�3 15.32 3 10�3 344 45 76.12

Lac 2 (8.54 6 3.47) 3 10�3 1.28 3 10�3 16.06 3 10�3 117 43 9.05

Tet 1 (8.26 6 4.21) 3 10�3 0.16 3 10�3 15.83 3 10�3 365 44 70.66

Tet 2 (7.73 6 4.40) 3 10�3 0.22 3 10�3 13.96 3 10�3 333 50 53.46

Ara 1 (7.13 6 4.32) 3 10�3 0.61 3 10�3 15.05 3 10�3 243 46 19.02

Ara 2 (7.07 6 5.01) 3 10�3 0.21 3 10�3 17.14 3 10�3 438 40 56.01

Twenty independent optimizations were conducted. Values are given in units of 1/s and as half-lives. All rate constants started at 10 3 10�3 s�1.
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does have the advantage of using some of the most realistic

models of gene expression available—models whose pa-

rameters describe actual physical rate constants. Experiments

conducted with the optimization parameters show that while

the simulated annealing algorithm does require several empir-

ical parameters, these parameters may be varied within a

fairly wide range. Furthermore, most of these empirical pa-

rameters are not network-specific and could be applied to

design and optimize other gene networks.

The experiments described in Table 2 and Fig. 2 show that

the size of the ensemble of trials that must be calculated

within the simulated annealing algorithm is not especially

large. While computing just a single trial at each point in

phase-space does produce somewhat erratic behavior, a

significant improvement can be made by computing on the

order of 10 trials, rather than hundreds or thousands. In fact,

if a given amount of CPU time is available, it is shown to be

more productive to compute a large number of independent

optimizations using small ensembles than to compute a small

number of optimizations using large ensembles.

In the end, however, the goal would be to actually

construct these oscillators with a priori control over their

behavior. This is somewhat more difficult due to the general

lack of true kinetic data available. While the ordering of

reaction-events required for gene expression is very well

known, e.g., binding of the RNAp to the promoter, binding

of the repressor to the operator, etc., in many cases our

knowledge stops at this level. Only a subset of these binding

or interaction events have been thermodynamically charac-

terized in terms of binding affinity, and of those, an even

smaller subset have been fully kinetically characterized in

terms of binding and unbinding rate constants. Mutant forms

are even more lacking in kinetic data than are their wild-type

counterparts. It is this level of detailed knowledge, however,

that is necessary to truly predict and model the expression of

a single gene or a gene regulatory network.

An experimentalist wishing to construct a specific network

in vivo would select a set of wild-type or mutant genetic

components whose kinetic parameters match, as closely as

possible, those of an optimized model. This optimization

scheme provides a means by which many potential sets of

such parameters may be located. The next step toward appli-

cation is the design or discovery of DNA binding components

whose kinetics approach at least one of these sets.
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